Purinergic P2 receptors modulate excitability but do not mediate pH sensitivity of RTN respiratory chemoreceptors.
نویسندگان
چکیده
The cellular mechanism(s) by which the brain senses changes in pH to regulate breathing (i.e., central chemoreception) have remained incompletely understood, in large part because the central respiratory chemoreceptors have themselves eluded detection. Here, we recorded from a newly identified population of central chemoreceptors located in the retrotrapezoid nucleus (RTN) on the ventral surface of the brainstem to test a recently proposed role for purinergic P2 receptor signaling in central respiratory chemoreception (Gourine et al., 2005). Using loose-patch current-clamp recordings in brainstem slices from rat pups (postnatal day 7-12), we indeed show purinergic modulation of pH-sensitive RTN neurons: activation of P2X receptors indirectly inhibited RTN firing by increasing inhibitory input, whereas P2Y receptor stimulation caused direct excitation of RTN chemoreceptors. However, after blocking P2 receptors with the broad-spectrum antagonists PPADS (pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate) or RB2 (reactive blue 2), the pH sensitivity of RTN neurons remained intact. Therefore, we conclude that purinergic signaling can modulate RTN neuron activity but does not mediate the pH sensing intrinsic to these central respiratory chemoreceptors.
منابع مشابه
Astrocytes in the retrotrapezoid nucleus sense H+ by inhibition of a Kir4.1-Kir5.1-like current and may contribute to chemoreception by a purinergic mechanism.
Central chemoreception is the mechanism by which CO(2)/pH sensors regulate breathing in response to tissue pH changes. There is compelling evidence that pH-sensitive neurons in the retrotrapezoid nucleus (RTN) are important chemoreceptors. Evidence also indicates that CO(2)/H(+)-evoked adenosine 5'-triphosphate (ATP) release in the RTN, from pH-sensitive astrocytes, contributes to chemoreceptio...
متن کاملIn vitro characterization of noradrenergic modulation of chemosensitive neurons in the retrotrapezoid nucleus.
Chemosensitive neurons in the retrotrapezoid nucleus (RTN) regulate breathing in response to CO2/H(+) changes and serve as an integration center for other autonomic centers, including brain stem noradrenergic neurons. Norepinephrine (NE) contributes to respiratory control and chemoreception, and, since disruption of NE signaling may contribute to several breathing disorders, we sought to charac...
متن کاملCentral respiratory chemoreception.
By definition central respiratory chemoreceptors (CRCs) are cells that are sensitive to changes in brain PCO(2) or pH and contribute to the stimulation of breathing elicited by hypercapnia or metabolic acidosis. CO(2) most likely works by lowering pH. The pertinent proton receptors have not been identified and may be ion channels. CRCs are probably neurons but may also include acid-sensitive gl...
متن کاملPhox2b-expressing retrotrapezoid neurons are intrinsically responsive to H+ and CO2.
Central respiratory chemoreceptors sense changes in CO2/H(+) and initiate the adjustments to ventilation required to preserve brain and tissue pH. The cellular nature of the sensors (neurons and/or glia) and their CNS location are not conclusively established but the glutamatergic, Phox2b-expressing neurons located in the retrotrapezoid nucleus (RTN) are strong candidates. However, a direct dem...
متن کاملCurrent ideas on central chemoreception by neurons and glial cells in the retrotrapezoid nucleus.
Central chemoreception is the mechanism by which CO2/pH-sensitive neurons (i.e., chemoreceptors) regulate breathing in response to changes in tissue pH. A region of the brain stem called the retrotrapezoid nucleus (RTN) is thought to be an important site of chemoreception (23), and recent evidence suggests that RTN chemoreception involves two interrelated mechanisms: H+-mediated activation of p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 27 شماره
صفحات -
تاریخ انتشار 2006